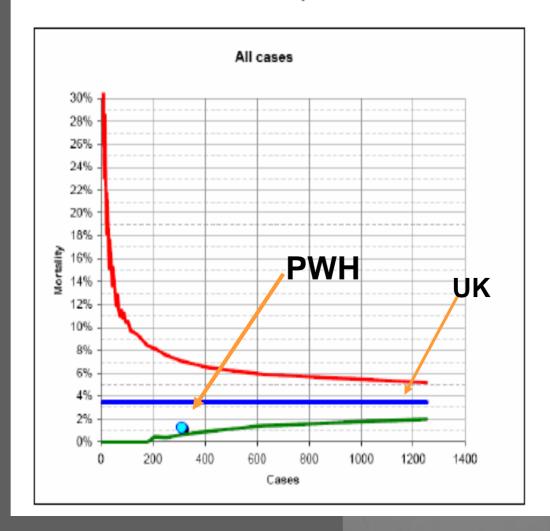
Risk Stratification and Outcome Analysis Following Cardiac Surgery: Validation of scoring systems and implications for quality assurance

Randolph HL Wong, FRCS

Innes Wan, FRCS,
Song Wan, FRCS
Calvin Ng, FRCS
Wendy Bower, BSc
Andrew van Hasselt, FRCS
Malcolm J Underwood, FRCS
Division of Cardiothoracic Surgery
Department of Surgery
The Chinese University of Hong Kong

Ideal Surgical Practice


- Accurate reporting of morbidity and mortality
- Validated local risk-stratification models
- Ability to compare outcome with international standards
- Qualities assurance program

Patient Outcomes: Non-Risk Adjusted

Funnel Plot, PWH Mortality, UK Alert Lines.

What is 'Risk Stratification'?

 Risk Stratification is a method of predicting outcomes based upon severity of illness and co-morbidity of the patient population

How: 'Risk Stratification (Scoring)'?

- Define Quantifiable Variables in Subset
 - Age, LV Function
- Determine Contribution to 'Risk' Event
 - Death
- Assess Effect of Combinations of Variables
 - Additive and Logistic
- Generate "Predictive Score"
 - 'probability' not 'certainty'

EuroSCORE: 1999 (European System for Cardiac Operative Risk Evaluation)

European Journal of Cardio-thoracic Surgery 16 (1999) 9-13

CARDIO-THORACIC SURGERY

European system for cardiac operative risk evaluation (EuroSCORE)*

S.A.M. Nashef*, F. Roques, P. Michel, E. Gauducheau, S. Lemeshow, R. Salamon, the EuroSCORE study group

Papsonh Hospital, Cambridge CB3 8RE, UK

Received 21 September 1998; accepted 29 March 1999

128 Hospitals20,000 patients97 Risk Factors

EuroSCORE

- Additive
 - 13 clinical factors

- Logistic
 - Same 13 clinical factors
 - ? More Accurate

 $Predicted \ mortality = \ e^{\ (\beta_0 + \sum \beta i \ Xi)} \ / \ 1 + \ e^{\ (\beta_0 + \sum \beta i \ Xi)}$

where

e is the natural logarithm = 2.718281828...

 β o is the constant of the logistic regression equation = -4.789594

βi is the coefficient of the variable Xi in the logistic regression equation provided in the table below.

Xi = 1 if a categorical risk factor is present and 0 if it is absent

For age, Xi = 1 if patient age ≤ 60 ; Xi increase by one point per year thereafter;

hence for age 59 or less Xi = 1, age 60 Xi = 2, age 61 Xi = 3, and so on.

Bayes Tables: United Kingdom Data

The simple (5-factor) CABG Bayes score

		r¹	n '	р"	odds *	LR ^v	weight "
OVERALL		835	33,392	2.5%	0.026	NA	-36.63
Age	<56 years old	84	6,626	1.3%	0.013	0.501	-6.92
	56-60 years old	70	5,250	1.3%	0.014	0.527	-6.41
	61-65 years old	134	6,670	2.0%	0.021	0.799	-2.24
	66-70 years old	183	6,730	2.7%	0.028	1.090	0.86
	71-75 years old	195	4,952	3.9%	0.041	1.598	4.69
	>75 years old	153	2,325	6.6%	0.070	2.747	10.10
face	<1.7 m2	118	2,941	4.0%	0.042	1.630	4.88
Body Surface Area	1.70-1.89 m2	201	6,979	2.9%	0.030	1.156	1.45
	1.90-2.39 m2	355	16,490	2.2%	0.022	0.858	-1.53
	>2.39 m2	39	2,284	1.7%	0.017	0.677	-3.90
ĔĔ	Good EF	317	19,652	1.6%	0.016	0.639	-4.480
Ejection fraction	Fair EF	248	8,410	2.9%	0.030	1.185	1.70
更完	Poor EF	185	2,044	9.1%	0.100	3.880	13.56
<u> </u>	Elective	374	21,098	1.8%	0.018	0.704	-3.52
Priority	Urgent	247	8,142	3.0%	0.031	1.220	1.99
ے	Emergency	126	914	13.8%	0.160	6.235	18.30
Prior op'ns	None	679	29,278	2.3%	0.024	0.926	-0.77
Pr	One or more	87	1,335	6.5%	0.070	2.718	10.00

The complex (9-factor) CABG Bayes score

		r'	n'	р"	odds ™	LR ^v	weight "
OVERALL		835	33,392	2.5%	0.026	NA	-36.63
Age	<56 years old	84	6,626	1.3%	0.013	0.501	-6.92
	56-60 years old	70	5,250	1.3%	0.014	0.527	-6.41
	61-65 years old	134	6,670	2.0%	0.021	0.799	-2.24
	66-70 years old	183	6,730	2.7%	0.028	1.090	0.86
	71-75 years old	195	4,952	3.9%	0.041	1.598	4.69
4	>75 years old	153	2,325	6.6%	0.070	2.747	10.10
face	<1.7 m2	118	2,941	4.0%	0.042	1.630	4.88
Body Surface Area	1.70-1.89 m2	201	6,979	2.9%	0.030	1.156	1.45
ody.	1.90-2.39 m2	355	16,490	2.2%	0.022	0.858	-1.53
	>2.39 m2	38	2,280	1.7%	0.017	0.661	-4.14
Diabetes	No	162	5,055	3.2%	0.033	1.291	2.55
Diab	Yes	559	23,486	2.4%	0.024	0.951	-0.51
높	No	310	14,776	2.1%	0.021	0.836	-1.80
I	Yes	462	15,773	2.9%	0.030	1.177	1.63
LMS	No	418	19,431	2.2%	0.022	0.857	-1.54
5	Yes	138	3,919	3.5%	0.036	1.423	3.53
ë ë	Good	317	19,652	1.6%	0.016	0.639	-4.47
Ejection fraction	Fair	248	8,410	2.9%	0.030	1.185	1.70
Ę,	Poor	185	2,044	9.1%	0.100	3.880	13.56
<u> </u>	Elective	374	21,098	1.8%	0.018	0.704	-3.51
Priority	Urgent	247	8,142	3.0%	0.031	1.220	1.99
٥	Emergency	126	914	13.8%	0.160	6.235	18.30
_ e	Dialysis	12	138	8.7%	0.095	3.713	13.12
Renal disease	Elevated creatinine	85	1,071	7.9%	0.086	3.361	12.12
~ =	None	463	21,778	2.1%	0.022	0.847	-1.66
or	None	679	29,278	2.3%	0.024	0.926	-0.77
Prior op'ns	One or more	87	1,335	6.5%	0.070	2.718	10.00

Aim of Study

- To validate internationally recognized riskscoring systems :
 - EuroSCORE
 - Additive
 - Logistic
 - Complex Bayes

for the local population undergoing cardiac surgery in PWH

To allow continuous quality assurance

Validating Scoring System

- Study of all cardiac surgical patients in consecutive 24 months
- Data entered into commercially available computerized system
- Allow 'Real-time' data access and automatic data transfer to analysis module
- Audit trail for data collection and validation

Cardiac Surgical Database Prince of Wales Hospital, Chinese University of Hong Kong Version 1.0; page 1

	Demographics	
Hospital number		
Date of birth	dd / mm / yyyy	
Gender	O Male	○ Female
	Initial database entry	
	Admission details	
Referring hospital	O PWH O TMH	○ NDH ○ AHNH ○ Others
Referring cardiologist	select from table	
Date of referral	dd / mm / yyyy	
Date of outpatient clinic	dd / mm / yyyy	
Date of admission	dd / mm / yyyy	
Date of operation	dd / mm / yyyy	
Admission category	○ HA	O Private
Mode of admission	Elective Planned inpatient transfer	☐ Emergency
Angina status pre-surgery	No angina No limitation of physical activity Slight limitation of ordinary activit Marked limitation of ordinary phys Symptoms at rest or minimal activ	sical activity
Dyspnoea status pre-surgery	No limitation of physical activity Slight limitation of ordinary activit Marked limitation of ordinary phys Symptoms at rest or minimal activ	sical activity
Congestive cardiac failure	Never In past	○ Now
Symptom status	○ Stable	Unstable / recent deter'n
Number of previous MIs	○ None ○ One	Two or more Unknown
Interval between surgery and last MI		○ MI 31-90 days ○ MI >90 days

nvention 2008

Logistic Euroscore : Calculator

Patient-rel	ated factor	rs .	Cardiac-related factors			
Age (years)	0	0	Unstable angina ⁶	No	0	
Gender	Select	0	LV function	Select	0	
Chronic pulmonary disease ¹	No	0	Recent MI ⁷	No	0	
Extracardiac arteriopathy ²	No	0	Pulmonary hypertension ⁸	No	0	
Neurological dysfunction ³	No	0	Operation-related fact		rs	
Previous Cardiac Surgery	No	0	Emergency ⁹	No	0	
Creatinine > 200 µmol/ L	No	0	Other than isolated CABG	No	0	
Active endocarditis ⁴	No	0	Surgery on thoracic aorta	No	0	
Critical preoperative state ⁵	No	0	Post infarct septal rupture	No	0	
					i i	
Logistic EuroSCORE	0					
Note: Logistic is now default calculator		e Clear				

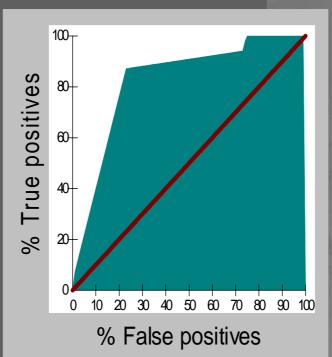
Validating Scoring System

- Data from 612 patients was entered
- Allow calculation of
 - Additive and logistic EuroSCORE
 - Complex Bayes
- Predictive accuracy for local population was assessed using Receiver Operating Characteristic Curve

HA Convention 2008

Direct Comparison of Risk Scoring Systems: Testing

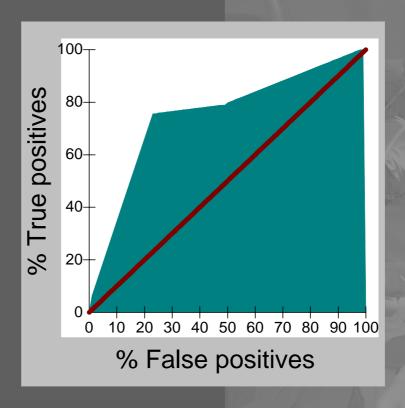
- Receiver Operating Characteristic (ROC) Curves
 - Area represents probability that risk predictor accurately discriminates between death and survival
 - Area of 1 = Perfect Discrimination
 - Area < 0.5 = No Discrimination
 - Area >0.7 = Validity in Predictive Accuracy


EuroSCORE

Additive: 0.834

Logistic: 0.805

Division of Cardiothoracic Surgery, PWH



HA Convention 2008

Complex Bayes: 0.775

Performance Trends Over Time

Risk Adjusted Trends

- Risk-Adjusted CUSUM (cumulative events over time)
- Variable Life Adjusted Display Charts (VLAD)

$$\frac{\delta_p}{(1-\delta_n)}$$

Initially two hypotheses must be set: the first is H_O , which is the outcome rate that we wish to test. Thi could be set to the level of current practice. The second, alternative hypothesis, H_A defines the deviation from H_O to be detected. Either increases in the outcome rate or decreases in the outcome rate may be detected; a doubling in the outcome rate would set, a halving in the outcome rate or any other suitable differences may be chosen. There is an odds ratio associated with each of these hypotheses; the odds ratio associated with H_O is denoted OR_O , and the odds ration associated with H_A is OR_A . Using our previous notation:

$$OR_O = \frac{\delta_O}{\delta_O}$$
 and $OR_A = \frac{\delta_A}{\delta_O}$

where

 S_O is the probability of the adverse outcome under H_O

 δ_A is the probability of the adverse outcome under H_A

If H_A is set such that a doubling in the rate is to be examined, δ_A is clearly 2; if H_A is intended to look for halving in the rate, δ_A is 0.5. The method repeatedly tests H_O against H_A . Under H_O the odds on an advers outcome for an individual patient, O_{PO} are:

$$O_{pO} = \frac{OR_O \cdot \delta_p}{\left(1 - \delta_p\right)}$$

The corresponding probability of an adverse outcome for this same patient is:

$$\delta_{po} = \frac{OR_o \cdot \delta_p}{\left[1 - \delta_p + \left(OR_o \cdot \delta_p\right)\right]}$$

Under H_A the odds on an adverse outcome for an individual patient, O_{pA} are:

$$O_{pA} = \frac{OR_A \cdot \delta_p}{\left(1 - \delta_p\right)}$$

And, the corresponding probability of an adverse outcome for this same patient is:

$$\delta_{pA} = \frac{OR_A \cdot \delta_p}{\left[1 - \delta_p + \left(OR_A \cdot \delta_p\right)\right]}$$

Performance Trends Over Time

Risk-Adjusted Outcome Trend

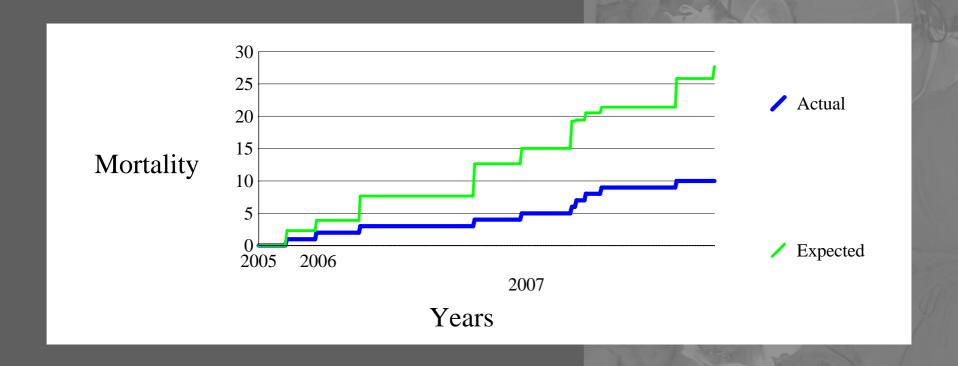
Plotting cumulative risk

This plot always has an upward trend and illustrates the cumulative risk over the operative sequence. Application and extension of this method can be used to calculate the cumulative risk associated with any group of patients using any suitable risk score. The following equation describes this approach:

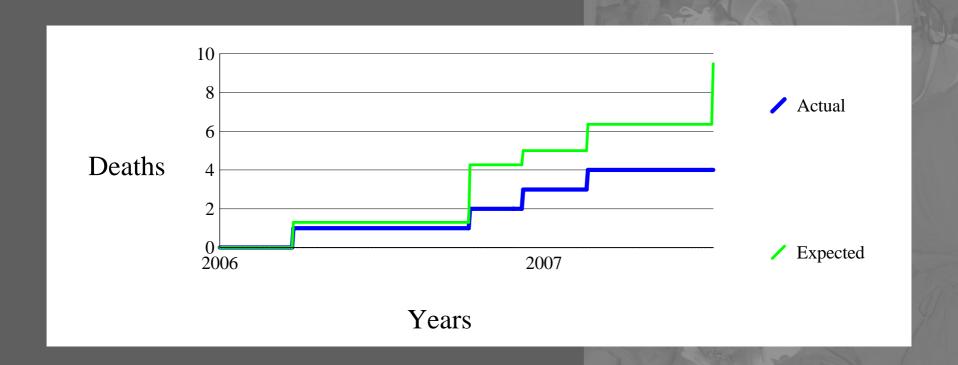
$$\rho_n = \sum_{p=1}^{p=n} \delta_p$$

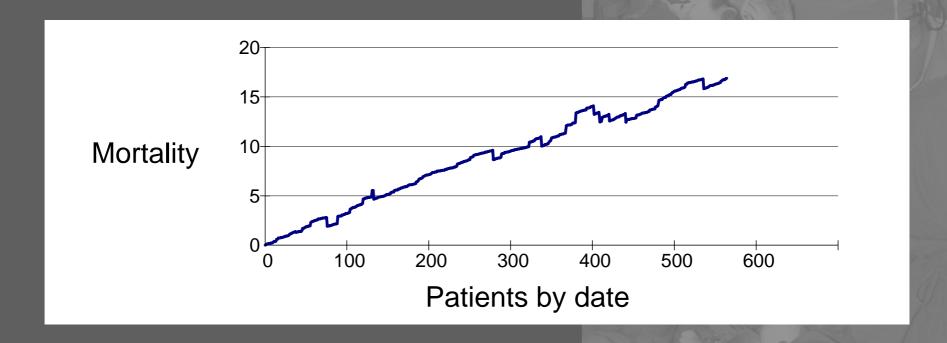
where

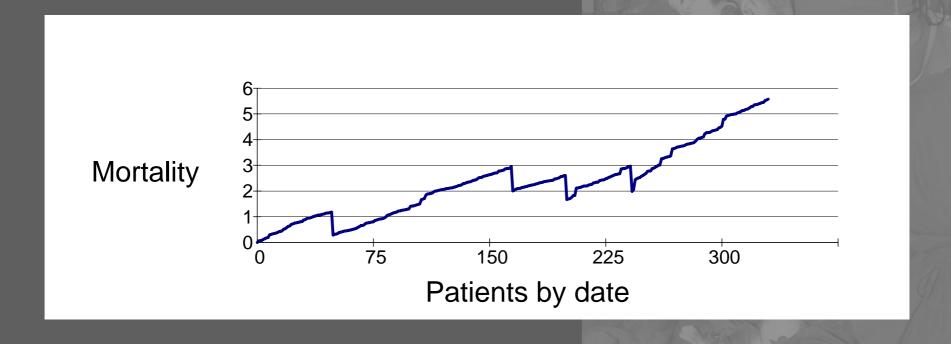
p is the number of operations in the sequence

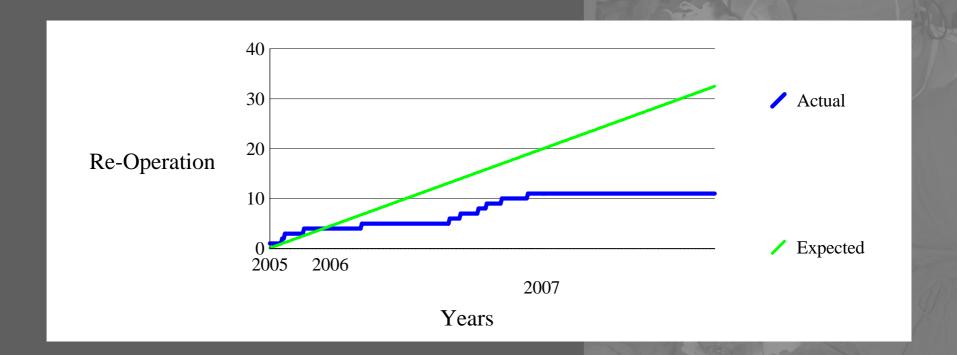

 δ_p is the predicted outcome rate for the patient at operation number p

 ρ_n is the cumulative risk when the operative sequence is n

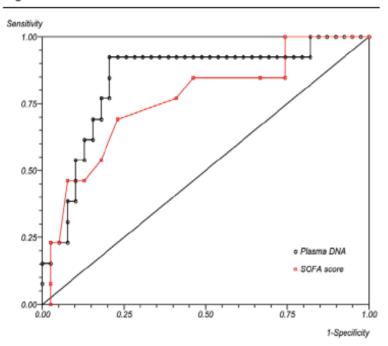

RA-CUSUM 2005-2007 Logistic EuroSCORE: 612pts


RA-CUSUM for Isolated CABG Complex Bayes


RA-Trends 2005-2007 Logistic EuroSCORE


RA-Trends CABG 2 years Logistic EuroSCORE

Re-operation for bleeding vs 5%


Research

Open Access

Plasma DNA concentration as a predictor of mortality and sepsis in critically ill patients

Andrew Rhodes¹, Stephen J Wort¹, Helen Thomas², Paul Collinson² and E David Bennett¹

Figure 2

Receiver operating characteristic curves for plasma DNA and the Sepsis-related Organ Failure Assessment (SOFA) score to predict intensive care outcome. The area under the curve for plasma DNA is 0.84 (95% confidence interval, 0.71–0.97) and that for the SOFA score is 0.76 (95% confidence interval, 0.61–0.92).

 Addition of 'genetic' predictors of outcome following complications

Association Between the TNF-2 Allele and a Better Survival in Cardiogenic Shock*

Olivier Appoloni, MD; Etienne Dupont, MD, PhD; Marleen Vandercruys, RT; Marc Andrien, BS; Jean Duchateau, MD, PhD; and Jean-Louis Vincent, MD, PhD, FCCP

Conclusion

 We have validated the discriminatory ability of internationally recognized scoring systems in cardiac surgical patients in HK population

Conclusion

- Continuous "Real-time" monitoring in riskadjusted manner
- Quality assurance program to monitor outcomes with internationally published standards

Special Thanks to:

- Professor MJ Underwood and Cardiac surgical team colleagues
- Cardiac Anaesthetists
- Perfusionists
- Dedicated Ward Nurses
- Research Assistants

Parsonnet: Circulation 1989

	Factor	Definition	Score
	Gender	Female	1
	Morbid obesity	Body Mass Index >35	3
	Diabetes	Any history of diabetes regardless of duration or treatment. Latent diabetes of pregnancy excluded	3
	Hypertension	A history of blood pressure greater than 140/90mmHg on two occasions, or lower if on medication	3
	LV dysfunction	Good (50%)	0
		Fair (30-49%)	2
v		Poor (<30%)	4
factor	Age	70-74 years old	
Ī		75-79 years old	12
Patient-related factors		> 80 years old	20
	Re-operation	Second operation	
		Third (or more)	
	Intra aortic balloon pump	Prior to surgery. Do NOT include IABP's inserted prophylactically just prior to surgery because these represent post-operative support.	2
	Left ventricular aneurysm	Aneurysmectomy	5
	Recently failed intervention	Within 24 hours of operation	10
		>24 hours; operation on same admission	
	Renal	Dialysis dependency	10
	Catastrophic states	e.g.s acute structural defect, cardiogenic shock, acute renal failure	10-50
	Other rare circumstances	e.g.s paraplegia, pacemaker dependency, congenital heart disease in adults, severe asthma	2-10
pa	Mitral valve surgery	Systolic PA pressure <60 mmHg	5
elat S		Systolic PA pressure ≥60 mmHg	8
Surgery-related factors	Aortic valve surgery	AV pressure gradient ≤120 mmHg	5
ger		AV pressure gradient > 120 mmHg	7
Sul	CABG at the time of valve surgery		

Score

Mortality%

• 0-4

• 5-9

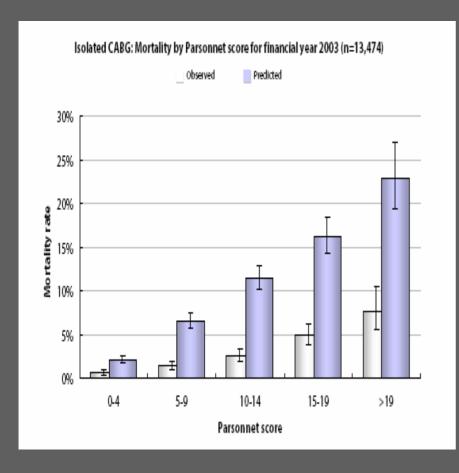
5

• 10-14

9

• 15-19

17


• >19

31

Parsonnet Score

- Outdated (1985)
- 16 Variables
- Use of Subjective Indices
- Poor prediction in 'High Risk'
- 'Over-Predicts' for Today's Population

Validation of the EuroSCORE model in Australia*

Cheng-Hon Yap ^{a,1,*}, Christopher Reid ^{b,1}, Michael Yii ^{a,1}, Michael A. Rowland ^{c,1}, Morteza Mohajeri ^{d,1}, Peter D. Skillington ^{e,1}, Siven Seevanayagam ^{f,1}, Julian A. Smith ^{g,1}

^a Department of Cardiothoracic Surgery, St Vincent's Hospital Melbourne, Melbourne, Australia
^b Baker Heart Research Institute and CCRE Therapeutics, Monash University, Melbourne, Australia
^c The Alfred Hospital, Melbourne, Australia
^d The Geelong Hospital, Melbourne, Australia
^e Royal Melbourne Hospital, Melbourne, Australia
^f The Austin Hospital, Melbourne, Australia
^g Monash Medical Centre, Melbourne, Australia

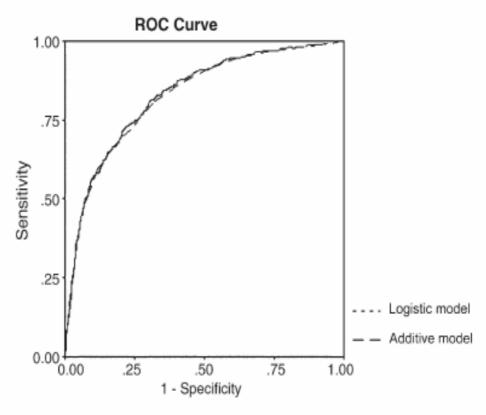
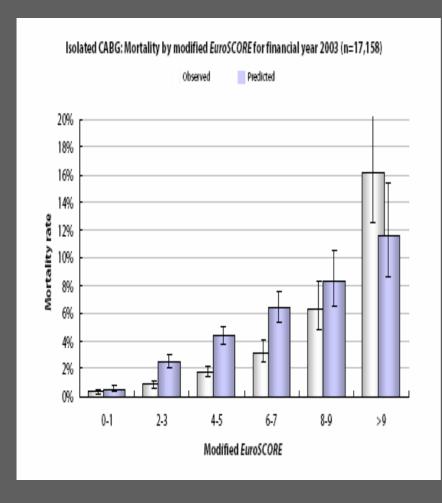



Fig. 1. Receiver operating characteristic (ROC) curves. Area under the curve is 0.83 for the additive and logistic EuroSCORE models when applied to the entire study cohort.

Euroscore: Additive

- Simple additive risk scoring
- 13 clinical factors
- More accurate than Parsonnet
- Least accurate for 'High Risk' Groups

Euroscore: Logistic Component

Predicted mortality = $e^{(\beta_0 + \sum \beta_i X_i)} / 1 + e^{(\beta_0 + \sum \beta_i X_i)}$

where

e is the natural logarithm = 2.718281828...

βo is the constant of the logistic regression equation = -4.789594

βi is the coefficient of the variable Xi in the logistic regression equation provided in the table below.

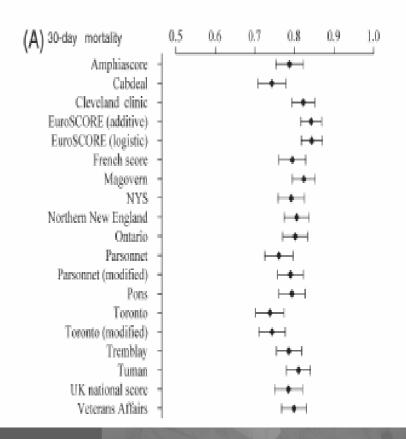
Xi = 1 if a categorical risk factor is present and 0 if it is absent

For age, Xi = 1 if patient age ≤ 60 ; Xi increase by one point per year thereafter;

hence for age 59 or less Xi = 1, age 60 Xi = 2, age 61 Xi = 3, and so on.

- Same 13Components
- More Accurate
 - High Risk Groups
- Over-Predicts Risk in This Group

Comparison of 19 pre-operative risk stratification models in open-heart surgery


Johan Nilsson^{1*}, Lars Algotsson², Peter Höglund³, Carsten Lührs¹, and Johan Brandt¹

Received 23 August 2005; revised 2 November 2005; accepted 16 December 2005; online publish-ahead-of-print 18 January 2006

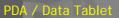
Table 1 Synopsis of original data of 19 risk score algorithms

	Region	Year of data	Year of	Number of patients	Risk	ROC
		collection	publication	(centers)	variables	area
Amphiascore ²³	Netherlands	1997-2001	2003	7282 (1)	8	0.84
Cabdeal ^{a,24}	Finland	1990-1991	1996	386 (1)	7	0.71
Cleveland clinic ²⁵	USA	1986-1988	1992	5051 (1)	13	N/A
EuroSCORE (add.)26	Europe	1995	1999	13 302 (128)	17	0.79
EuroSCORE (log.)27	Europe	1995	2003	13 302 (128)	17	0.79
French score ²⁸	France	1993	1995	7181 (42)	13	0.75
Magovern ^{a,29}	USA	1991-1992	1996	1567 (1)	18	0.86
NYS a,3,30	USA	1998	2001	18 814 (33)	14	0.79
NNE ^{a,11}	USA	1996-1998	1999	7290 (N/A)	8	N/A
Ontario ³¹	Canada	1991-1993	1995	6213 (9)	6	0.75
Parsonnet ³²	USA	1982-1987	1989	3500 (1)	16	N/A
Parsonnet (mod.)33	France	1992-1993	1997	6649 (42)	41	0.70
Pons ³⁴	Spain	1994	1997	1309 (7)	11	N/A
Toronto ^{a,35}	Canada	1993-1996	1999	7491 (2)	9	0.78
Toronto (mod.)a,36	Canada	1996-1997	2000	1904 (1)	9	N/A
Tremblay ³⁷	Canada	1989-1990	1993	2029 (1)	8	N/A
Tuman ³⁸	USA	N/A	1992	3156 (1)	10	N/A
UK national score ^{a,5}	UK	1995-1996	1998	1774 (2)	19	0.75
Veterans Affairsa,39	USA	1987-1990	1993	12 712 (43)	10	N/A

Add, additive; log, logistic; mod, modified; NNE, Northern New England; N/A, not available. Cleveland Clinic risk score algorithm is also known as Higgins score, NNE as American College of Cardiology/American Heart Association (ACA/AHA) score, and Ontario as Provincial Adult Cardiac Care Network (PACCN)

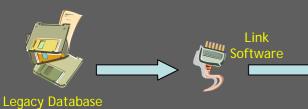
Euroscore perfermed well for overall group and CAB only group

¹Department of Cardiothoracic Surgery, Heart and Lung Centre, Lund University Hospital, SE 221 85 Lund, Sweden;


²Department of Cardiothoracic Anesthesiology, Heart and Lung Centre, Lund University Hospital, Lund, Sweden; and

³Competence Centre for Clinical Research, Lund University Hospital, Lund, Sweden

^{*}Algorithms developed for CABG-only surgery.



Laptop / Standalone PC

Network Workstations

Hospital PAS / EPR

OCR

SEQUENTIAL OUTCOME ANALYSIS

CUSUM

VLAD

CRAO

CRAM

ANALYSIS

Basic Analysis

Longi <mark>le tot</mark>al

PATIENT REPORTS

Discharge Summary

Operation Notes

Follow Up

Parsonnet & EuroSCORE

Bayes

Division of Cardiothoracic_{Neural Networks}

Ad-Hoc Reports Audit Reports

REPORTS

The Audit Trail

The primary outcome is in-hospital death.

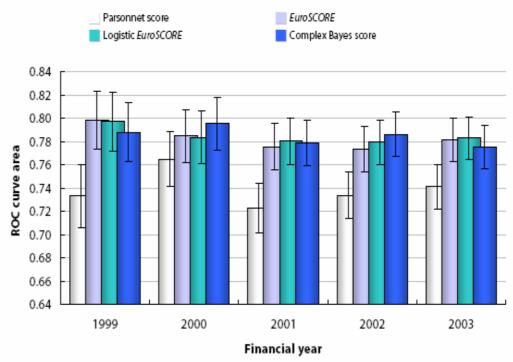
Patient Admitted/Surgery Automated Demographic Data Entry

Patient Journey
Data Entry at 'Point of Clinical Care '

Case note goes to Audit Office
Discharge letter completed
Case note returned to Medical Records Dept
Data Entry to Computerised Database by Research Assistant

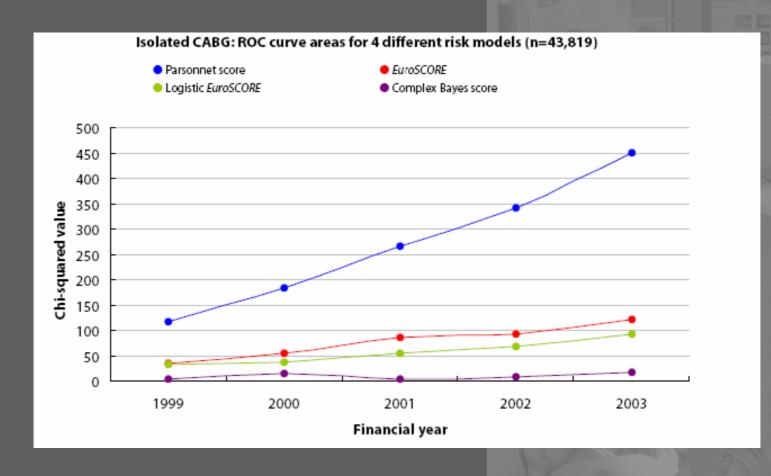
Data Analysis and Review Data review involves:

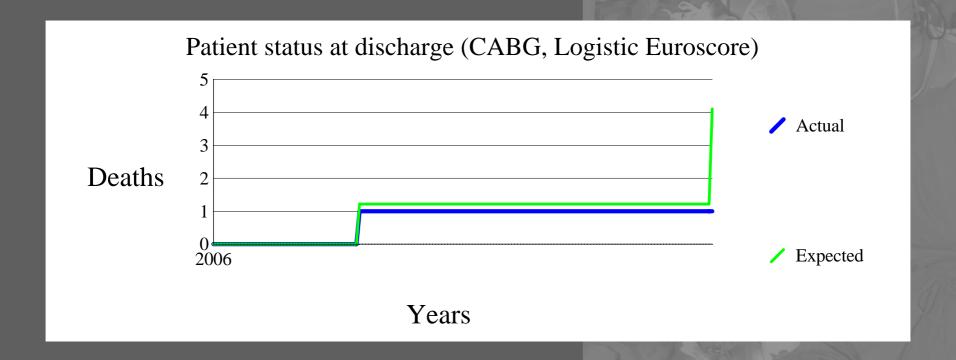
- a) Checking if case is on the database with correct demographic details and matched to the correct consultant
- b) Reviewing completeness of the data. All fields must be complete from admission to discharge. Any blank fields are flagged for subsequent completion
- c) Validating the accuracy of the data. Audit Officer reviews all variables for consistency between database and case note. Identified discrepancies are reviewed with each firm's HSTand database amended as appropriate. A final audit check is done to ensure changes have been made accurately and the record is then locked. This process ensures data cannot be altered once validated, without the intervention of the Audit Officer.


The above process is completed for all adult cardiac surgery cases. The process ensures that the data on the database is complete and accurate, hence ensuring validated quality data.

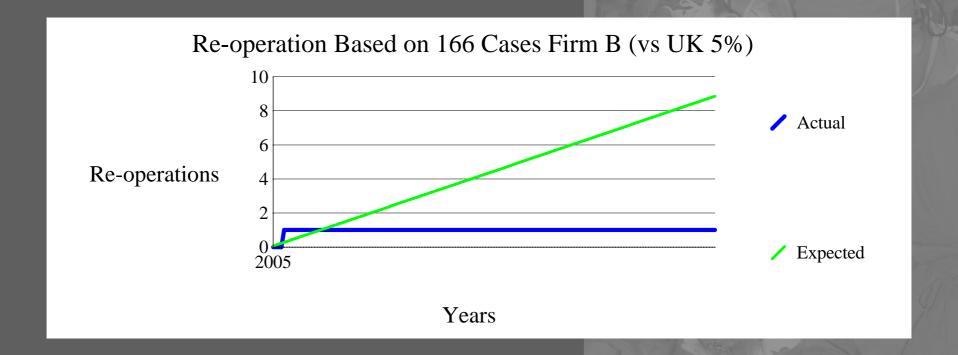
Summary

ROC curve areas

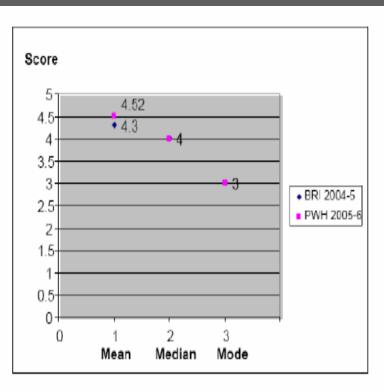

Isolated CABG: Calibration plot chi-squared values for 4 different risk models (n=43,822)

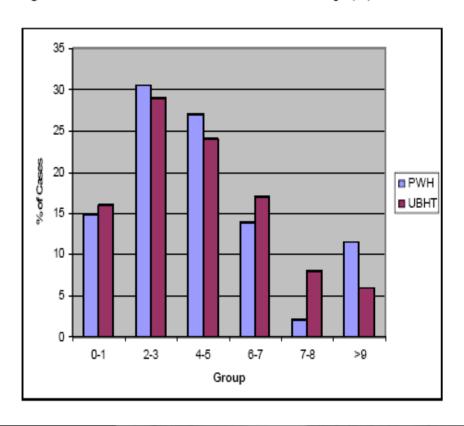

Summary

Isolated CABG



Re-operation Based on 144 Cases Firm A (vs UK 5%) Re-operations Re-operations Actual Years

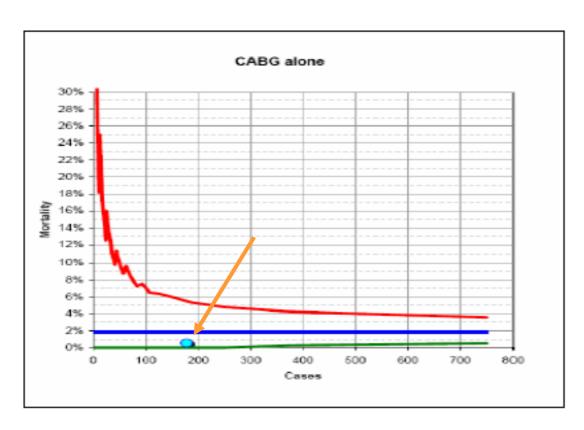




Risk Comparison

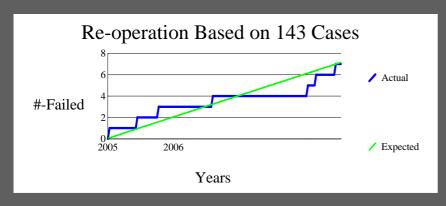
From these comparisons we can see that despite case-mix differences, the overall risk-profiles are very similar. (The Median and Mode were identical values).

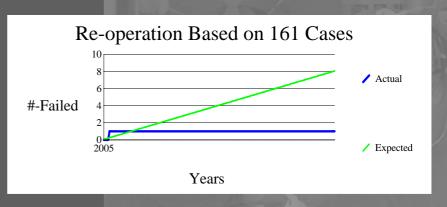
Figure 12. Case distribution within EuroSCORE Groups (%).



CABG Outcome

Figure 23. Funnel Plot of crude CABG mortality.

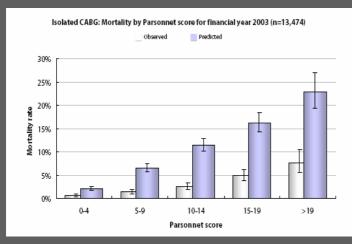


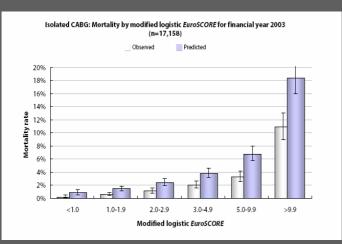

PWH data blue 'dot', UK alert lines (see Figure 6 explanatory note).

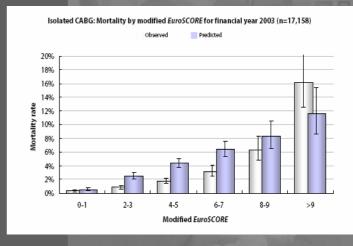
Risk Models	Total no, of patients	H-L statistic (P-value)	ROC area (95% CI)
Parsonnet	4439	94.9 (<0.001)	0.73 (0.68-0.77)
EuroSCORE	4654	37,6 (<0,001)	0,76 (0,72-0,80)
ACC/AHA	4753	130,8(<0,001)	0.76 (0.72-0.81)
UK Bayes	5471	82.1 (<0.001)	0.77 (0.74-0.81)
Simple Bayes	5471	23.7 (0.004)	0.76 (0.72-0.79)
Complex Bayes	5471	42,9 (<0,001)	0,76 (0,73-0,80)

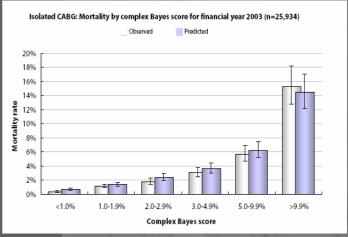
Institution Use of CUSUM Charts

•		1/1105-6aaa	1/1105-
	6mju		
•	Sample Size	143	161
•	Minimum Answer	0	0
•	Maximum Answer	15	23
•	Mean	3.77	5.15
•	Median	3	4.5
•	Mode	2	5
•	Sum	528	783
•	Standard Deviation	2.74	4.26
•	25th Percentile	2	2
•	50th Percentile	LES S	4.5
•	75th Percentile		6.75


Reoperation for bleeding All CABG vs 3 %







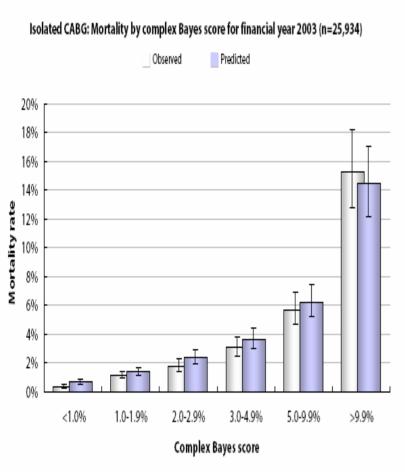
Summary

Composite Quality Measurements

The STS Composite Quality Measurement Methodology

Executive Summary

BACKGROUND


Cardiothoracic surgery has a long and distinguished history of critical selfexamination to improve the quality of patient care. Twenty years ago our profession was
challenged by an unprecedented call for accountability. Recognizing our responsibility to
our patients and our profession, STS embarked on one of the most extensive voluntary
clinical data collection initiatives in healthcare, the development of the STS National
Adult Cardiac Surgery Database (NCD). This Database is now among the largest and
most respected clinical data registries in the world, and studies based upon it have
substantially advanced patient care, research, and quality initiatives. Because of the early
development and continuing evolution of this outstanding Database, it has become the
national gold standard for cardiothoracic surgery and has established clearly-defined
benchmarks for clinical comparisons. Such information has become the cornerstone of
quality assessment in cardiothoracic surgery.

Our profession is now at a similar critical juncture as it was 20 years ago. Once again we are faced with a call for greater accountability, but now this attention is directed to the entire medical profession, not just one specialty or particular high-profile procedure. Furthermore, there is now widespread consensus that the keystone of

- Pre-Operative Medical Care
- Operative care
- Risk-Adjusted Mortality
- Risk-Adjusted Morbidity

Complex Bayes Analysis: Summary

- Complex Bayes very accurate
- Even in 'High Risk' Group

